Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity
نویسندگان
چکیده
Fusarium oxysporum is a soil-inhabiting fungus that induces vascular wilt and root rot in a variety of plants. F. oxysporum f. sp. conglutinans (Foc), which comprises two races, can cause wilt disease in cabbage. Compared with race 1 (52557(-TM), R1), race 2 (58385(-TM), R2) exhibits much stronger pathogenicity. Here, we provide the first proteome reference maps for Foc mycelium and conidia and identify 145 proteins with different abundances among the two races. Of these proteins, most of the high-abundance proteins in the R2 mycelium and conidia are involved in carbohydrate, amino acid and ion metabolism, which indicates that these proteins may play important roles in isolate R2's stronger pathogenicity. The expression levels of 20 typical genes demonstrate similarly altered patterns compared to the proteomic analysis. The protein glucanosyltransferase, which is involved in carbohydrate metabolism, was selected for research. We knocked out the corresponding gene (gas1) and found that Foc-∆gas1 significantly reduced growth rate and virulence compared with wild type isolates. These results deepened our understanding of the proteins related to F. oxysporum pathogenicity in cabbage Fusarium wilt and provided new opportunities to control this disease.
منابع مشابه
A SIX1 Homolog in Fusarium oxysporum f. sp. conglutinans Is Required for Full Virulence on Cabbage
Fusarium oxysporum is a soil-born fungus that induces wilt and root rot on a variety of plants. F. oxysporum f. sp. conglutinans (Foc) can cause wilt disease on cabbage. This study showed that a homolog of SIX1 protein in the Arabidopsis infecting isolate Fo5176 (Fo5176-SIX1) had four isoforms in the conidia of Foc by proteomic analysis. Thus, we analyzed the roles of protein Foc-SIX1. Gene exp...
متن کاملFusarium pathogenomics.
Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adap...
متن کاملQuantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races
BACKGROUND Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. METHODOLOGY We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245...
متن کاملRaces of the Celery Pathogen Fusarium oxysporum f. sp. apii Are Polyphyletic.
Fusarium oxysporum species complex (FOSC) isolates were obtained from celery with symptoms of Fusarium yellows between 1993 and 2013 primarily in California. Virulence tests and a two-gene dataset from 174 isolates indicated that virulent isolates collected before 2013 were a highly clonal population of F. oxysporum f. sp. apii race 2. In 2013, new highly virulent clonal isolates, designated ra...
متن کاملLocal origin of two vegetative compatibility groups of Fusarium oxysporum f. sp. vasinfectum in Australia
Pathogenicity and genetic diversity of Fusarium oxysporum from geographically widespread native Gossypium populations, including a cotton growing area believed to be the center of origin of VCG 01111 and VCG 01112 of F. oxysporum f. sp. vasinfectum (Fov) in Australia, was determined using glasshouse bioassays and AFLPs. Five lineages (A-E) were identified among 856 isolates. Of these, 12% were ...
متن کامل